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Abstract
We present low-temperature static and dynamic properties of the quantum one-
dimensional isotropic integer spin Heisenberg magnet with antiferromagnetic
nearest-neighbour (nn) and next-nearest-neighbour (nnn) interactions. The
modified spin-wave theory is used to provide quantities such as the spin-wave
dispersion relation, the ground-state energy, the gap and its dependence with
temperature, and the asymptotic behaviour of the spin–spin correlation function.
The ground state energy and the singlet–triplet energy gap are obtained for
several values of j , defined as the ratio of the nnn interaction constant to the nn
one. Our results show that the ground-state and the gap energies increase with j ,
in accordance with numerical results available in the literature. The calculation
of the dynamic correlation function is performed using the projection operator
formalism: the procedure includes up to two-magnon processes. We show that,
depending on the values of the frustration parameter j , the wavevector and the
temperature, a double-peak structure for the dynamical correlation function can
develop.

1. Introduction

The physics of low-dimensional quantum magnets has revealed many interesting and
unexpected behaviours, stimulating a great number of theoretical, numerical and experimental
studies in the area. Among the systems that have deserved attention for their rich behaviour are
those that, due to the symmetry of the lattice or to competing interactions between the spins
of the system, present some degree of frustration. Concerning antiferromagnetic systems, our
interest in this work, frustration tends to suppress antiferromagnetic correlations, and, therefore,
the tendency towards the Néel order. Then, as frustration is increased, the ground state of
the system can change and a quantum phase transition may occur. In quantum systems, the
interplay of frustration and quantum fluctuations may lead to a spin-liquid state or to some kind
of spontaneous symmetry breaking.
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One of the simplest quantum frustrated systems that has deserved great attention is the
quantum isotropic Heisenberg spin chain with antiferromagnetic nearest-neighbour (nn) and
next-nearest-neighbour (nnn) interactions. In the absence of frustration, the antiferromagnetic
Heisenberg chain is known to have quite different properties for integer or half-integer spins:
the so-called Haldane’s conjecture [1]. Then, it is natural to expect different behaviours
for frustrated Heisenberg chains involving integer or half-integer spins, and the knowledge
achieved in the field corroborates this expectation. The ground state of half-integer spin
frustrated chains is either in the spin-fluid phase [2] or in the dimer phase [3, 4], depending
on whether j , the ratio of the nnn interaction constant to the nn one, is smaller or larger than a
critical value jc ≈ 0.241 [5, 6].

The ground-state properties of the spin-1 frustrated chain were first investigated by
Tonegawa et al [7], and the phase diagram was finally clarified by Kolezhuk et al [8]. Analytical
methods [9, 10] predicted a gap for any value of frustration, and this fact was confirmed by
numerical studies [7, 8]. The phase diagram of the integer spin antiferromagnetic Heisenberg
one-dimensional model has three special points [8]. At jD = 0.284(1), there is a disorder point
of the first kind, signalling the onset of incommensurate spin–spin correlations in the chain.
A Lifshitz point at jL = 0.3725(25) is identified by the appearance of a doubly degenerate
structure in the excitation spectrum leading to the emergence of a two-peak structure in the S(q)

structure function. The third special point at jT = 0.7444(6) is related to a phase transition
from the Haldane (or Affleck–Kennedy–Lieb–Tasaki [11]—AKLT) phase to the next-nearest-
neighbour AKLT phase. The Haldane phase, j < jT, is characterized by a finite value of the
string order parameter [12]; at jT this order parameter goes to zero, and the phase transition was
initially identified [8] as a first-order transition. Later, Kolezhuk and Shollwöck [13] showed
that the order parameter of the large- j phase is related to two intertwined strings and that the
phase transition has a topological nature. A rich phase diagram was also found for the frustrated
X X Z antiferromagnetic spin S = 1 chain by using the density matrix renormalization group
method [14]. The ground state of this model shows six different phases: the Haldane, gapped
chiral, gapless chiral, double Haldane, Néel, and double Néel.

However, despite the enormous progress achieved in the understanding of the ground-
state properties of the spin-1 frustrated antiferromagnetic Heisenberg one-dimensional model,
results describing the dynamics of such a model are still missing—even in an approximate
framework. In the present work, we calculate the dynamical correlation function of this
model using the equation of motion approach in conjunction with projection operator methods,
following a procedure proposed originally by Reiter [15] and further developed by other
authors [16]. This method is not limited to short-time and short-distance behaviour and has
proven successful in the study of the classical and quantum Heisenberg models in one [17] and
two dimensions [18, 19], showing good agreement with experimental data, molecular dynamic
simulations, and, also, with other theories [20].

The calculation of the memory function, which plays a central role in the formalism, does
not require long-range order to be valid because it depends only on correlations between first
and second neighbours. The frequency of the local spin-wave modes and static correlations
are required as input to the method and, in this work, are obtained via the modified spin-wave
(MSW) treatment instead of using the standard spin-wave theory, as usual. It is well known that
the standard spin-wave theory is not applicable to low-dimensional quantum magnets without
modifications [21]. In the MSW theory [22], the consequence of the Mermin–Wagner theorem
is enforced by hand in a variational density matrix approach. The procedure has been applied
to one- (1D) and two-dimensional (2D) ferro- [22] and antiferromagnets [23, 24], giving results
in excellent agreement with results obtained via exact diagonalization [25] and renormalization
group theory [26]. The phase diagram of the 2D frustrated Heisenberg spin S = 1/2 model
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was obtained [27] by means of the MSW approach. Some of us [28] applied the method to the
non-frustrated 1D, spin-1, Heisenberg model to obtain the dependence of the gap as a function
of the temperature and the comparison to experimental data [29] obtained for the Y2BaNiO5

compound is acceptable. Besides using the MSW theory to obtain the quantities required by the
memory function formalism, we also use it to calculate other quantities related to the ground
state of the model, showing that this simple theory gives good estimates for the ground-state
energy and for the asymptotic behaviour of the spin–spin correlation function. The dependence
of the gap with temperature and with the frustration parameter is in qualitative agreement with
other numerical data [7, 30].

The combination of these two techniques, the projection operator method and the MSW
theory, was already applied by some of us to study the low-temperature properties of the
quantum 1D spin-1 [28] and 2D (finite-T ) spin-1/2 [19] Heisenberg models, where a gap is
expected to occur. The projection operator method takes into account, properly, the effects
due to magnon scattering in the calculation of the dynamical structure function, as will be
discussed, in more detail, in section 3. The procedure adopted in this paper is valid for integer
spins. However, in our calculations, we have used S = 1.

The paper is organized as follows. In section 2, we briefly review the MSW theory and
discuss the results obtained for the ground-state energy, the gap, and the spin–spin correlation
function for several values of the frustration parameter, j . The projection operator method
and the results obtained for the dynamical correlation function are discussed in section 3. Our
conclusions are presented in section 4.

2. Modified spin-wave theory and results

The Hamiltonian describing the antiferromagnetic frustrated Heisenberg chain can be written
as

H = J1

∑

l

{[T2l · S2l+1 + S2l+1 · T2l+2] + j [T2l · T2l+2 + S2l+1 · S2l+3]}, (1)

where the sum runs over all l sites of each sublattice, T2l and S2l+1 denote the spins in the two
different sublattices, and j is the frustration parameter defined as j = J2/J1, where J1 and J2

are, respectively, the antiferromagnetic nn and nnn coupling constants.
We now apply the Dyson–Maleev transformation to represent the spin operators in each

antiferromagnetic sublattice in terms of bosonic operators, writing

T −
2l = a†

2l; T †
2l = (2S − a†

2la2l)a2l,

T z
2l = S − a†

2la2l; Sz
2l+1 = −S + b†

2l+1b2l+1;
S−

2l+1 = −b2l+1; S†
2l+1 = −b†

2l+1(2S − b†
2l+1b2l+1).

(2)

Using (2), Hamiltonian (1) has no term higher than the fourth order, and we construct a self-
consistent theory instead of a conventional 1/S expansion. In terms of these bosonic operators,
the Hamiltonian has now the form

H = E0 + H0 + H1, (3)

where E0 = −2J1 N S2(1 − j), N is the number of spins in each sublattice, and H0 and H1

represent terms of the Hamiltonian involving, respectively, products of two and four bosonic
operators. The expressions for these two terms are

H0 = J1S
∑

l

{2b†
2l+1b2l+1 + 2a†

2la2l − (a2l + a2l+2)b2l+1 − (a†
2l + a†

2l+2)b
†
2l+1

− j [(a†
2l+2 − a†

2l)(a2l+2 − a2l) + (b†
2l+1 − b†

2l+3)(b2l+1 − b2l+3)]} (4)
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and

H1 = J1

2

∑

l

{a†
2l(b

†
2l+1 − a2l)

2b2l+1 + a†
2l+2(b

†
2l+1 − a2l+2)

2b2l+1

− j [a†
2la

†
2l+2(a2l − a2l+2)

2 + (b†
2l+1 − b†

2l+3)
2b2l+1b2l+3]}. (5)

Following Takahashi [24], we now introduce an ideal spin-wave ansatz for the density matrix
of the system,

ρ = exp

(
1

T

∑

k

ωk{α†
k αk + β

†
k βk}

)
, (6)

where the sum is performed over half of the first Brillouin zone, and the operators αk and βk

are introduced by the Bogoliubov transformation,

αk = cosh θk ak − sinh θk b†
−k,

β
†
k = cosh θk b†

−k − sinh θkak .
(7)

In (7), ak and b†
−k are the Fourier transforms of the original boson operators,

ak = 1√
N

∑

l

a2le
ik(2l−1/2),

b†
−k = 1√

N

∑

l

b†
2l+1e−ik(2l+1/2),

(8)

where the lattice constant was set equal to unity.
The energy ε = 〈H 〉 and the dispersion relation ωk are obtained after minimizing the free

energy under the constraint of zero site magnetization, that is, 〈T z
2l〉 = 〈Sz

2l+1〉 = 0. In this way,
we obtain

E = −2N J1{[S − ( f (0) − 1
2 − g(δ))]2 − j [S − ( f (0) − 1

2 − f (2δ))]2}, (9)

where δ is a vector between nn sites, and we have used the definitions

f (r2l − r2l′) = f (r2l+1 − r2l′+1) = 1

2N

∑

k

eik(2l−2l′ )φk cosh 2θk,

g(r2l − r2l′+1) = 1

2N

∑

k

eik(2l−2l′−1)φk sinh 2θk,

(10)

where φk = 2nk + 1, nk is the usual occupation number, nk = 〈α†
k αk〉 = 〈β†

k βk〉 =
[exp(ωk/T ) − 1]−1, and θk is given by

tanh 2θk = η cos k

1 − � sin2 k
. (11)

In the MSW theory, the expression for the dispersion relation is

ωk = λ

√
(1 − � sin2 k)2 − η2 cos2 k. (12)

In (12), we have introduced the parameters λ, μ, η, and �, which are defined by the relations

λ = 2J1g(δ) − μ, (13)

η = 2J1g(δ)

λ
, (14)

� = 4 j J1 f (2δ)

λ
. (15)
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In the equations above, μ is the Lagrange multiplier used in the minimization of the free energy
under the restriction of zero site magnetization, and � is the parameter related to the inclusion
of the nnn interactions.

The quantities of our interest, that is, the ground-state energy, the dispersion relation, the
gap, defined here as ωk=0, and the spin–spin correlation function, can be obtained after the
parameters defined in (13)–(15) are known. These parameters are obtained after solving the
following set of self-consistent equations:

2S + 1 = λ

N

∑

k

1 − � sin2 k

ωk
coth

( ωk

2T

)
,

ηλ

2J1
= λ

2N

∑

k

η cos2 k

ωk
coth

( ωk

2T

)
,

�λ

4J1
= λj

2N

∑

k

cos(2k)(1 − � sin2 k)

ωk
coth

( ωk

2T

)
.

(16)

These equations were solved for 0 � j � jmax = 0.30. We cannot find solutions to the set
of self-consistent equations for j > jmax because the MSW procedure considered here departs
from the boson transformation defined in (2) which accounts only for small deviations from the
Néel order. According to the classical spin-wave theory, the ground state is Néel-like for j = 0.
The nnn interaction introduces frustration into the system and the Néel state cannot be the true
ground state for large values of j where we expect that each sublattice has some kind of spiral
alignment. Therefore, for large j , the ground state may be obtained from the Néel state by
applying a uniform twist along the chain direction. In the S → ∞ limit, a classical treatment
shows that the ground state is in the Néel phase for j < 0.25, and in a spiral phase for j > 0.25.
In their work, Kolezhuk et al [8] found a disorder point at jD = 0.284(1) marking the onset
of incommensurate spin–spin correlations in the chain. This disorder point is related to the
existence of two low-temperature phases, the Néel and spiral phases. There is also a Lifshitz
point at jL = 0.3725 [8], identified by the appearance of a two-peaked structure function for
j > jL. Tonegawa et al [7] also restricted their numerical calculation to the 0 < j < 0.40
region because they identified an incommensurate character for larger j . Therefore, we suggest
that the lack of a numerical solution to the set of self-consistent equations (16) for j > jmax is
related to this change in the ground state.

The ground-state energy can be obtained from (9), using S = 1, and our result is shown in
figure 1 (circles), where we also represent the numerical estimates obtained by Tonegawa et al
[7] (squares) using an exact diagonalization method. As can be seen in that figure, our results
are in very good agreement with the numerical ones.

In the range investigated, we obtain η < 1 for any temperature, implying that there is a
non-zero gap for the frustrated antiferromagnetic model, S = 1, as predicted by theoretical
studies [9, 10] and more sophisticated numerical techniques [7, 8, 30]. The gap at zero
temperature, 0, as a function of the frustration parameter is shown in figure 2. We can see
that the competition between the antiferromagnetic nn and nnn interactions stabilizes the gap
since 0 increases with j . The gap at zero temperature as a function of j was also obtained
by Pati et al [30] and Kolezhuk et al [8] by using the density matrix renormalization group
(DMRG) method. Their results show that 0 increases with j for j < 0.4; for larger j , the
gap decreases up to j ≈ 0.74, where a topological phase transition occurs [13]. However, the
magnitude of the gap determined in our procedure is much smaller (by a factor of 5) than the gap
determined by the DMRG method. This kind of numerical discrepancy between numerical and
analytical estimates for the gap has also been observed for the non-frustrated antiferromagnetic
Heisenberg model (the Haldane system) not only for estimates obtained by using the MSW

5
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E
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S

MSW
Tonegawa et al

Figure 1. Ground-state energy, EGS, as a function of j for S = 1. The MSW results (circles) are
compared to numerical data [7] (squares) available in the literature.

0 0,1 0,2
j=J

2
/J

1

0

0,05

0,1

0,15

0,2

0,25

Δ 0

MSW

Figure 2. Gap at zero temperature, 0, as a function of j obtained from the MSW approach, for
S = 1.

theory but also from calculations based in the nonlinear σ model [32]. In fact, up to the present
moment, no analytical approach is able to predict the correct magnitude of 0 as a function
of microscopic parameters. Therefore, in order to compare our results to the numerical ones
obtained by Tonegawa et al [7] and Pati et al [30], we compare the normalized gap, that is, the
gap obtained for a given j at zero temperature, (T = 0), divided by the gap for j = 0, at
T = 0, as a function of j . This result is displayed in figure 3, where we see that the MSW
results predict the ratio (T = 0)/0 to increase with j more quickly than the numerical
results. Figure 4 shows the behaviour of the normalized gap, for j = 0.00, 0.05, 0.10 and 0.20,
as a function of the normalized temperature: the gap increases with temperature in essentially
the same way for all j shown.

The spin–spin correlation as a function of r , the distance between spins, is shown in
figure 5. As could be expected, the correlation function, 〈Si · S j 〉, decays more quickly with
r as j increases. The asymptotic behaviour of 〈Si · S j 〉 can be nicely fitted by the function
exp(−r/ξ)/

√
r , where ξ is identified as the correlation length: our results show that ξ decreases

6
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0 0,05 0,1 0,15 0,2 0,25 0,3
j

0

0,5

1

1,5

2

2,5

3

3,5

4
Δ(

Τ=
0)

/Δ
0

MSW
Tonegawa et al

Figure 3. Gap at zero temperature,
(T = 0), normalized by the gap at
zero temperature for j = 0, 0, as a
function of j for S = 1. The MSW results
(full circles) are compared to the numerical
results obtained by Tonegawa et al [7] (full
squares).

0 0,3 0,6 0,9 1,2 1,5
Τ/Δ(0)

0,5

1

1,5

2

Δ(
Τ)

/Δ
(0

)

j = 0.00
j = 0.05
j = 0.10
j = 0.20

Figure 4. Gap at temperature T , (T ),
normalized by the value of the gap at zero
temperature for each j value, (0), as
a function of the normalized temperature,
T/(0), for j = 0.00, 0.05, 0.10, and 0.20
for S = 1.

Figure 5. Correlation function |〈S0 · Sr 〉|, as
a function of the distance r , for several values
of j .

as j increases. Figure 6 shows the point, rf, at which our numerical results start to agree with
the asymptotic expansion, as a function of the frustration parameter.
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Figure 6. The point, rf , at which our numerical results start to agree with the asymptotic expansion,
as a function of the frustration parameter.

3. The projection operator method and results

The method adopted here for the calculation of the dynamic correlation function—a projection
operator method including up to two magnon processes—is valid in the low-temperature range.
We notice that, to our knowledge, this is the first attempt to obtain the dynamical behaviour of
Hamiltonian (1).

We must also remark that a first attempt to study the dynamic properties of (1) could
be done, with greater simplicity, in the spin-wave framework by calculating quantities like
〈Si (t)Sj (0)〉 and its transforms: such a procedure was applied by many other authors to get
information about the dynamical behaviour of other spin systems. Despite its simplicity, this
last procedure—which will be referred to here as ‘the usual spin-wave dynamic method’—has
some drawbacks when compared to the method adopted in this work. For example, magnon
scatterings are not included in the simpler procedure and, therefore, our calculation is, in this
sense, more advanced. An interesting discussion concerning the similarities and differences
between the usual spin-wave dynamic method and the projection operator method can be found
in [33] and [34], which compare the results obtained by applying each of these two methods to
1D and 2D Heisenberg ferromagnets.

In antiferromagnets, spin waves have two flavours, one associated with the conventional
magnetization, Mα

q = Sα
q +T α

q , and the other with the staggered magnetization, Rα
q = Sα

q −T α
q ,

with α = x, y, z. At low temperatures, the Rα
q correlation function is the leading contribution

to the structure factor near the antiferromagnetic wavevector [28, 19] and, in this work, we will
be concerned with its calculation. The calculation of the Mα

q function could also be done in the
same framework but this will not be our task in this work.

We emphasize that only rotationally invariant quantities such as Rq = 1
3 (Rx

q + Ry
q + Rz

q)

are calculated here. Due to the isotropic character of Hamiltonian (1), each of the three spin
components gives the same contribution to the dynamical behaviour of the model. However, the
Dyson–Maleev transformation breaks the symmetry of the spin space, giving a privileged rule
to the z-component. Therefore, we restore the model’s symmetry by computing rotationally
invariant quantities.

In the following, we describe the main steps leading to the calculation of the dynamic
correlation function. A detailed description of the procedure can be found in [15, 16]. One of
the advantages of this procedure is that it allows us to obtain the structure factor for all values of

8
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the wavevector q , while calculations based on the nonlinear σ model are restricted to the long-
wavelength limit q → 0. The Fourier transform of the relaxation function is given by [35]

R(q, ω) = 1

2π

∫ ∞

−∞
dte−iωt (Rq(t),Rq(0))

(Rq,Rq)
. (17)

Here, (A, B) is the Kubo inner product of two operators A and B , defined as [36]

(A, B) = 1

β

∫ β

0
〈eλH A†e−λH B〉 dλ, (18)

where 〈· · ·〉 denotes the usual thermal average and β = 1/kBT . One can show that, after some
analytical work, the dynamical correlation function R(q, ω) is given by

R(q, ω) = (Rq,Rq)〈ω2
q〉�′′

q (ω)

[ω2 − 〈ω2
q 〉 + ω�′

q(ω)]2 + [ω�′′
q (ω)]2

, (19)

where �′
q(ω) and �′′

q (ω) are the real and imaginary parts of the second-order memory function
�q(ω), respectively. In time space, this memory function is expressed by

�q(t) = − (QL2Rq, e−iQL Qt QL2Rq)

(LRq, LRq)
, (20)

where Q is a projection operator that projects out any term proportional to Rq and LRq , with
L being the Liouville operator defined by the relation L A = −i[A, H ]. Reiter [15] has shown
that, to leading order in temperature, the operator Q in the exponential function (20) can be
dropped, so we can write

QL2Rq = L2Rq − 〈ω2
q〉Rq . (21)

In equation (19), we also need to calculate the second frequency moment 〈ω2
q〉, given by

〈ω2
q 〉 = (LRq, LRq)

(Rq,Rq)
. (22)

The second time derivative needed to evaluate the numerator of the memory function (20)
is directly obtained from the definition of the Liouville operator and from (1). The whole
calculation is very straightforward but the expressions are enormous, and, for brevity, we
will not show them here. The next step requires us to apply the Dyson–Malleev (2) and
Bogoliubov (7) transformations for the spin operators in those expressions—as done in the
previous section. As shown by Reiter [15], we can, to leading order in temperature, replace the
time evolution exp(−iLT ) by the harmonic time evolution, that is

αq(t) = e−iωq tαq(0),

α†
q(t) = eiωq tα†

q(0),
(23)

and similar equations for βq(t) and β†
q (t). So, we are left with a number of Kubo products of

four bosonic operators which can be decoupled by using standard procedures. After a tedious
but simple calculation, we get

�q(t) = 2

N

∑

k

[A−(q, k) cos(�−t) + A+(q, k) cos(�+t)], (24)

where A− and A+ are given by

A−(q, k) = [�1(q, k)]2

(LRq, LRq)
× (eβωk − eβωq−k )

β�−
nknq−k,

A+(q, k) = [�2(q, k)]2

(LRq, LRq)
× (eβ�+ − 1)

β�+
nknq−k .

(25)

9
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In the definitions of A± we have used

�1(q, k) = D1(q, k)[ukvq−k + uq−kvk] − D2(q, k)[ukuq−k + vq−kvk],
�2(q, k) = D1(q, k)[ukuq−k + vq−kvk] − D2(q, k)[ukvq−k + uq−kvk], (26)

where

D1(q, k) = 8J 2
1 S2{cos(k)[1 − 2 j sin2(q − k)] + cos(q − k)[1 − 2 j sin2(k)]},

D2(q, k) = 4J 2
1 S2{[cos(k) + cos(q − k)]2 + 2 j 2[cos(2k)

− cos(2q − 2k)] × [sin2(k) − sin2(q − k)]} + 〈ω2
q 〉.

In the expressions above, nq is, as before, the boson occupation number and �± is defined as

�± = ωk ± ωq−k . (27)

The expression for (LRq, LRq) is also needed for evaluation of the second moment which,
according to (22), is given by the ratio of the two expressions below:

(LRq, LRq) = 8(J1S)2

N

∑

k

{
F2

1 (q, k)
(eβωk − eβωq−k )

β�−
+ F2

2 (q, k)
(eβ�+ − 1)

β�+

}
nknq−k (28)

and

(Rq,Rq) = 2

N

∑

k

{
(eβωk − eβωq−k )

β�−
[ukuq−k + vkvq−k]2

+ (eβ�+ − 1)

β�+
[ukvq−k + uq−kvk]2

}
nknq−k . (29)

In (28), we have used

F1(q, k) = [cos(k) + cos(q − k)][ukvq−k − uq−kvk]
+ j [cos(2k) − cos(2q − 2k)][ukuq−k − vkvq−k ],

F2(q, k) = [cos(k) + cos(q − k)][ukuq−k − vkvq−k]
+ j [cos(2k) − cos(2q − 2k)][ukvq−k − uq−kvk].

Taking the Laplace transform of the memory function (24) and, then, applying the Cauchy
formula we finally obtain the expressions for the real and imaginary parts of the memory
function as given by

�′
q(ω) = 1

2π2
P

∫ {
A−(q, k)

ω + �−
+ A−(q, k)

ω − �−
+ A+(q, k)

ω + �+
+ A+(q, k)

ω − �+

}
, (30)

and

�′′
q (ω) = 1

2π

∑

ki

{
A−(q, k)

|d�−/dk|k1

[δ(ω + �−) + δ(ω − �−)]

+ A+(q, k)

|d�+/dk|k2

[δ(ω + �+) + δ(ω − �+)]
}

, (31)

where the ki with i = 1, 2 correspond to the roots of ω = |�−(q, k1)| and ω = |�+(q, k2)|,
and the summation is performed over half of the first Brillouin zone.

The method employed here is restricted to the low-temperature regime, that is, T 	 J ,
but, as discussed by Reiter [15], it is exact to leading order in temperature. The extension
of the wavevector region depends on how precise are the expressions to be used for the static
quantities required by the memory function formalism. If we had exact expressions for, say, the

10
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Figure 7. �− e �+ as a function of k/π for j = 0.10, q = π/10 and T = 0.20J1S2. The
horizontal line corresponds to the spin-wave energy ωq .

second moment, the whole wavevector range would be covered by this technique. However, as
the second moment is calculated in the context of the MSW theory, we are bound to the same
domain of that theory, that is, q > ξ−1, where ξ is the correlation length. In the following
paragraphs, we discuss our numerical results for the dynamic correlation function calculated
from the above expressions.

Several features of the dynamic correlation function can be understood by analysing the
�+ and �− functions due to the relationship between these two functions and the real and
imaginary parts of the memory function, given by equations (30) and (31). The �± functions
for j = 0.10, q = π/10, and T = 0.20J1S2 are plotted in figure 7. The horizontal line
in figure 7 represents the spin-wave energy for the chosen parameters. An examination of
equation (31) leads us to expect divergences at the maxima and minima of �±, that is, at the
wavevectors where the two-magnon density of states

n± =
∣∣∣∣

dk

d�±(q, k)

∣∣∣∣ (32)

diverges. From figure 7, we expect �′′ to diverge at three frequencies: ω = �1, the absolute
value of the �− maximum and minimum, ω = �2, the minimum, and ω = �3, the maximum
of �+. In that figure, the behaviour of �± as a function of k/π for T = 0.2J1S2 can be
compared to the one obtained for the non-frustrated case [28]: the main difference is that for
the frustrated case ( j = 0.1) the frequency difference, ω = �2 − �1, is larger (0.26) than
the one found in the non-frustrated case (0.20) [28]. As we will discuss below, this difference
is intimately related to the zero energy gap, which, as shown in the previous section, increases
with j .

The �+ and �− curves never cross, and therefore, due to the delta functions in (31), the
damping will either receive contributions from �− for ω � |�1|, or from �+ in the frequency
region �2 � ω � �3. The contributions from �− correspond to the absorption and reemission
of a magnon, called a difference process, while the contributions from �+ correspond to the
creation of two magnons, a sum process. We thus conclude that for �1 < ω < �2, none of
these two processes can contribute to the damping, that is, �′′(q, ω) = 0, and, consequently,
R(q, ω) = 0, in a frequency range equal to ω, approximately centred at the spin-wave energy
ωq . This feature is a consequence of the existence of a gap in the spin-wave dispersion relation
(ω ∝ ωq=0) and will be present in any theory that includes only two-magnon processes.

11
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Figure 8. �′′
q (continuous line) and �′
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(dashed line) as a function of ω for j =
0.10, q = π/10 and T = 0.20J1S2.
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Figure 9. R(q, ω) as a function of ω for
j = 0.10, q = π/10 and T = 0.04J1S2

(continuous line) and T = 0.20J1S2

(dashed line).

The real and imaginary parts of the memory function for j = 0.10, q = π/10, and
T = 0.20J1S2 are shown in figure 8. The dynamic correlation function, R(q, ω), for the same
parameters, and also for T = 0.04J1S2, is shown in figure 9. In figure 8, we see that �′′ is
not as sharply peaked at �3 as it is at �1 and �2. Obviously, in a numerical calculation, the
divergences of (31) will only be met if one points exactly at the precise value of the wavevector
satisfying d�±/dk = 0. Then, we will not get a really divergent result for �′′: the values
obtained depend on the values (small) of the derivatives (d�±/dk) in the neighbourhood of
the critical point and, also, on the numerator, A±, given by equations (25). The functions A±
depend on the occupation numbers which are small at high temperatures (T = 0.2J1S2) and
high frequencies: for this reason, in �′′ (figure 8), the effect of the divergence at �3 is not so
sharp as the ones at �1 and �2.

For larger wavevectors, such as, for example, q = π/4, we find that �+ has an absolute
maximum (�3) and a local maximum at a frequency value close to �2. This means that we
expect a peaked behaviour for �′′ at a fourth frequency: the one corresponding to the local
maximum in �+. The effect of this fourth frequency can be seen in figure 10, where we show
R(q, ω) for q = π/4, j = 0.10 and two temperatures T/J1S2 = 0.04 and 0.12: comparing
with the result shown in figure 9, we see that the contribution due to the sum process has a
richer structure in figure 10. In the following, we will discuss our results for R(q, ω) for a
small wavevector, q = π/10, and for a moderately large wavevector, q = π/4.

12
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Figure 10. R(q, ω) as a function of ω for
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Figure 11. R(q, ω) as a function of ω for
q = π/10, T = 0.04J1S2 for several values
of j .

For q = π/10, j = 0.10, and low temperature (T/J1 S2 = 0.04), the dynamic correlation
function exhibits a single peak, as can be seen in figure 9: this peak corresponds to the
contribution from �+. As the temperature is raised (figure 9 for T/J1S2 = 0.20), the number
of magnons in the system increases and the peak related to �− appears. The frequency region,
ω, where R(q, ω) is null becomes wider with temperature increases and the distance between
the two peaks gets bigger: for T/J1S2 = 0.20 the two peaks are well defined and separated.

A typical behaviour for R(q, ω) in the large-wavevector region is displayed in figure 10,
where we plot the dynamic correlation function for q = π/4, j = 0.10, T/J1S2 = 0.04, 0.12,
and 0.20. Notice that, in the temperature range shown, there is basically a single peak which
is due to the contribution from �−, or better, to the absorption and reemission of a magnon.
The peak due to the contribution from �+ has small intensity and is too narrow (it becomes
narrower as T increases) to be experimentally observable. The explanation for this behaviour is
that magnons with large wavevectors require a large amount of energy to be created and, then,
difference processes have a higher probability of occurring.

We now discuss the effect of enhancing the frustration in the system. The effect of the
frustration parameter, at T/J1S2 = 0.04 and 0.20, for q = π/10 and q = π/4, is shown
in figures 11–14 for j = 0.05, 0.10, 0.15, and 0.20. A common feature in those figures is
that the increment on j makes the parameter � larger and, therefore, the spin-wave energy,
equation (12), for a specific wavevector decreases. This explains why the peaks related to

13
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Figure 12. R(q, ω) as a function of ω for q = π/10, T = 0.20J1S2 for several values of j .
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Figure 13. R(q, ω) as a function of ω for q = π/4, T = 0.04J1S2 for several values of j .

contributions from the �+ and �− functions move to lower frequencies as j increases. Also,
as j increases, the gap energy and, therefore, ω, become larger, and so does the distance
between the two peaks in R(q, ω).

For the smaller wavevector, q = π/10, for all j and temperatures shown in figures 11
and 12, we observe no other changes due to the variation of j : for T/J1S2 = 0.04, there is
basically a single peak—the one related to �+—whose intensity does not vary appreciably. For
higher temperature, T/J1S2 = 0.20, the peak related to the difference process develops and,
as j increases, the intensity at low frequencies (ω → 0) becomes higher; however, roughly
speaking, we may say that the areas under each of the two peaks do not suffer sharp variations.
We then conclude that, for small wavevectors, we have a single peak at low temperatures and a
double peak for higher temperature: as T and j increase, the distance between the two peaks
becomes bigger.

An examination of figure 13, for q = π/4 and T/J1S2 = 0.04, shows that the main peak
in R(q, ω) (the one related to �−) is quite small and decreases appreciably as j increases:
this suggests that, for low temperatures, magnons with such high wavevectors have a small
chance to be found in the system and the contribution from two-magnon processes to the
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Figure 14. R(q, ω) as a function of ω for q = π/4, T = 0.20J1S2 for several values of j .

dynamic correlation function is very small. As could be expected, for higher temperature,
T/J1S2 = 0.20, even energetic magnons can be created, and the peak in R(q, ω) for q = π/4
becomes significant.

4. Conclusion

In this paper, we have investigated static and dynamic properties of the frustrated
antiferromagnetic Heisenberg chain by combining the MSW theory to the memory function
formalism. The MSW theory was used to obtain static quantities [31] such as the ground-
state energy, the dependence of the gap with the temperature and the frustration parameter,
the spin-wave dispersion relation and the behaviour of the spin–spin correlation function. The
MSW results for the ground-state energy are in good agreement with numerical data available
in the literature [7]. Although the MSW estimates for the gap, as a function of the frustration
parameter and the temperature, are much smaller than the ones obtained by more sophisticated
numerical techniques [7, 8, 30], we obtain a qualitative agreement leading to an increasing of
the gap as j and T increases. The asymptotic behaviour of the spin–spin correlation function
decays with the distance r as exp(−r/ξ)/

√
r , and, as could be expected, the correlation length

ξ decreases as j increases.
The dynamical correlation function was obtained for several j values, for low (T/J1S2 =

0.04) and moderately high (0.20) temperatures: we showed that there are two distinct
behaviours concerning the dependence on the wavevector. For small q and low temperature,
R(q, ω) shows a single peak corresponding to the process of two-magnon creation: as the
temperature is raised, a second peak, the one related to contributions from absorption and
reemission of a magnon, develops. This second peak is well split from the first one and it
is difficult to suppose that the inclusion of higher-order processes (such as, for example, three-
magnon scattering) in the calculation of R(q, ω) will fill up the region separating them.

For larger wavevectors, the contribution from �− is always dominant. However, if the
temperature is not high enough to allow the presence of high-energy magnons, the contribution
to R(q, ω) can be negligible. Therefore, for large q , we expect a single peak only for
moderately high temperature.

The analytical procedure adopted in this work to calculate the dynamical correlation
function has been proved [15, 16, 28, 18, 19] to be successful in the low-temperature region.
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Therefore, as we have presented here the first attempt to obtain the dynamical behaviour of the
frustrated antiferromagnetic Heisenberg chain, we hope that our results will stimulate further
numerical and experimental investigations concerning the dynamic behaviour of the model.
The ω region around the spin-wave energy, giving a null result for the dynamical correlation
in this region, is not, as could be thought, a spurious result of the method: this feature will be
shared by any theory including only two-magnon processes.

References

[1] Haldane F D M 1983 Phys. Lett. A 93 464
Haldane F D M 1983 Phys. Rev. Lett. 50 1153

[2] White S R and Affleck I 1996 Phys. Rev. B 54 9862
[3] Majumdar C K 1970 J. Phys. C: Solid State Phys. 3 911
[4] Shastry B S and Sutherland B 1981 Phys. Rev. Lett. 47 964
[5] Nomura K and Okamoto K 1994 J. Phys. A: Math. Gen. 27 5773

Nomura K and Okamoto K 1993 J. Phys. Soc. Japan 62 1123
[6] Okamoto K and Nomura K 1992 Phys. Lett. A 169 433
[7] Tonegawa T, Kaburagi M, Ichikawa N and Harada I 1992 J. Phys. Soc. Japan 61 2890
[8] Kolezhuk A K, Roth R and Shollwöck U 1996 Phys. Rev. Lett. 77 5142
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